#include "scrypt_platform.h"
#include <sys/types.h>
#include <sys/mman.h>
#include <emmintrin.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sha256.h"
#include "sysendian.h"
#include "crypto_scrypt.h"
static void blkcpy(void *, void *, size_t);
static void blkxor(void *, void *, size_t);
static void salsa20_8(__m128i *);
static void blockmix_salsa8(__m128i *, __m128i *, __m128i *, size_t);
static uint64_t integerify(void *, size_t);
static void smix(uint8_t *, size_t, uint64_t, void *, void *);
static void
blkcpy(void * dest, void * src, size_t len)
{
__m128i * D = dest;
__m128i * S = src;
size_t L = len / 16;
size_t i;
for (i = 0; i < L; i++)
D[i] = S[i];
}
static void
blkxor(void * dest, void * src, size_t len)
{
__m128i * D = dest;
__m128i * S = src;
size_t L = len / 16;
size_t i;
for (i = 0; i < L; i++)
D[i] = _mm_xor_si128(D[i], S[i]);
}
static void
salsa20_8(__m128i B[4])
{
__m128i X0, X1, X2, X3;
__m128i T;
size_t i;
X0 = B[0];
X1 = B[1];
X2 = B[2];
X3 = B[3];
for (i = 0; i < 8; i += 2) {
T = _mm_add_epi32(X0, X3);
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
T = _mm_add_epi32(X1, X0);
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
T = _mm_add_epi32(X2, X1);
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
T = _mm_add_epi32(X3, X2);
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
X1 = _mm_shuffle_epi32(X1, 0x93);
X2 = _mm_shuffle_epi32(X2, 0x4E);
X3 = _mm_shuffle_epi32(X3, 0x39);
T = _mm_add_epi32(X0, X1);
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
T = _mm_add_epi32(X3, X0);
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
T = _mm_add_epi32(X2, X3);
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
T = _mm_add_epi32(X1, X2);
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
X1 = _mm_shuffle_epi32(X1, 0x39);
X2 = _mm_shuffle_epi32(X2, 0x4E);
X3 = _mm_shuffle_epi32(X3, 0x93);
}
B[0] = _mm_add_epi32(B[0], X0);
B[1] = _mm_add_epi32(B[1], X1);
B[2] = _mm_add_epi32(B[2], X2);
B[3] = _mm_add_epi32(B[3], X3);
}
static void
blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
{
size_t i;
blkcpy(X, &Bin[8 * r - 4], 64);
for (i = 0; i < r; i++) {
blkxor(X, &Bin[i * 8], 64);
salsa20_8(X);
blkcpy(&Bout[i * 4], X, 64);
blkxor(X, &Bin[i * 8 + 4], 64);
salsa20_8(X);
blkcpy(&Bout[(r + i) * 4], X, 64);
}
}
static uint64_t
integerify(void * B, size_t r)
{
uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
return (((uint64_t)(X[13]) << 32) + X[0]);
}
static void
smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
{
__m128i * X = XY;
__m128i * Y = (void *)((uintptr_t)(XY) + 128 * r);
__m128i * Z = (void *)((uintptr_t)(XY) + 256 * r);
uint32_t * X32 = (void *)X;
uint64_t i, j;
size_t k;
for (k = 0; k < 2 * r; k++) {
for (i = 0; i < 16; i++) {
X32[k * 16 + i] =
le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
}
}
for (i = 0; i < N; i += 2) {
blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
blockmix_salsa8(X, Y, Z, r);
blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
Y, 128 * r);
blockmix_salsa8(Y, X, Z, r);
}
for (i = 0; i < N; i += 2) {
j = integerify(X, r) & (N - 1);
blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
blockmix_salsa8(X, Y, Z, r);
j = integerify(Y, r) & (N - 1);
blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
blockmix_salsa8(Y, X, Z, r);
}
for (k = 0; k < 2 * r; k++) {
for (i = 0; i < 16; i++) {
le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
X32[k * 16 + i]);
}
}
}
int
crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
uint8_t * buf, size_t buflen)
{
void * B0, * V0, * XY0;
uint8_t * B;
uint32_t * V;
uint32_t * XY;
uint32_t i;
#if SIZE_MAX > UINT32_MAX
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
errno = EFBIG;
goto err0;
}
#endif
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
errno = EFBIG;
goto err0;
}
if (((N & (N - 1)) != 0) || (N == 0)) {
errno = EINVAL;
goto err0;
}
if ((r > SIZE_MAX / 128 / p) ||
#if SIZE_MAX / 256 <= UINT32_MAX
(r > (SIZE_MAX - 64) / 256) ||
#endif
(N > SIZE_MAX / 128 / r)) {
errno = ENOMEM;
goto err0;
}
#ifdef HAVE_POSIX_MEMALIGN
if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
goto err0;
B = (uint8_t *)(B0);
if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
goto err1;
XY = (uint32_t *)(XY0);
#ifndef MAP_ANON
if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
goto err2;
V = (uint32_t *)(V0);
#endif
#else
if ((B0 = malloc(128 * r * p + 63)) == NULL)
goto err0;
B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
goto err1;
XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
#ifndef MAP_ANON
if ((V0 = malloc(128 * r * N + 63)) == NULL)
goto err2;
V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
#endif
#endif
#ifdef MAP_ANON
if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
#ifdef MAP_NOCORE
MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
#else
MAP_ANON | MAP_PRIVATE,
#endif
-1, 0)) == MAP_FAILED)
goto err2;
V = (uint32_t *)(V0);
#endif
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
for (i = 0; i < p; i++) {
smix(&B[i * 128 * r], r, N, V, XY);
}
PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
#ifdef MAP_ANON
if (munmap(V0, 128 * r * N))
goto err2;
#else
free(V0);
#endif
free(XY0);
free(B0);
return (0);
err2:
free(XY0);
err1:
free(B0);
err0:
return (-1);
}